Telegram Group & Telegram Channel
Forwarded from Machinelearning
📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer



tg-me.com/machinelearning_interview/1705
Create:
Last Update:

📕 Андрей Карпаты опубликовал новый пост- необычный путь распространения LLM, их влияние на людей и организации, причины разрыва и взгляд в будущее.

В нем он анализирует необычное распространение больших языковых моделей (LLM).

Вот его содержание:
В отличие от традиционных технологий, которые обычно проходят путь от государственных и военных структур через корпорации к индивидуальным пользователям, LLM сразу стали широко доступны обычным людям.

Это позволило моделям значительно расширить свои возможности в таких областях, как программирование, анализ данных и создание контента, без необходимости привлекать узких специалистов.

ChatGPT — самое быстрорастущее приложение в истории, у него 400 миллионов активных пользователей в неделю.

Люди используют его для написания текстов, программирования, перевода, обучения, анализа, исследований и генерации идей

Это не просто улучшение жизни— это мощный бустер возможностей человека.

И барьер для входа использования LLM невероятно низкий: модели бесплатны или дешевы, быстры, доступны всем через API или локально, и говорят на любом языке, включая сленг и эмодзи.

Никогда еще человек не получал такого технологического скачка так быстро.

Почему же эффект для корпораций и государственных институтов не такой весомый?

Во-первых, LLM дают "квази-экспертные" знания: широкие, но неглубокие и ненадежные. Для организаций, где уже есть эксперты (инженеры, юристы, аналитики), это лишь слегка повышает эффективность.

А вот для человека, который обычно эксперт лишь в одном, LLM открывают новые горизонты: программировать, разбираться в юриспруденции, анализировать данные или создавать контент — все это теперь возможно без посторонней помощи.

Во-вторых, организации решают более сложные задачи: интеграции, устаревшие системы, безопасность, регуляции, координация.

Ошибки LLM тут куда опаснее — "вайб кодить" не выйдет.

В-третьих, есть инерция: бюрократия, культура компаний, переобучение — все это тормозит внедрение.

Пока LLM радикально меняют жизнь людей, а не организаций.

Мэри, Джим и Джо получают больше, чем Google или правительство США. Но что дальше? Если топовые модели станут сильно дороже и лучше, крупные игроки смогут "купить интеллект", и элита снова уйдет в отрыв.

Сегодня Билл Гейтс использует тот же GPT-4o, что и вы, но завтра его ребенок может учиться у GPT-8-pro-max, а ваш — у GPT-6-mini.

Сейчас мы находимся в уникальном моменте: будущее уже здесь, и технологии удивительно равномерно распределены. Будущее тут, и оно доступно для всех. Власть людям!

🔗 Оригинал

@ai_machinelearning_big_data

#AndrejKarpathy #influencer

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1705

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

The lead from Wall Street offers little clarity as the major averages opened lower on Friday and then bounced back and forth across the unchanged line, finally finishing mixed and little changed.The Dow added 33.18 points or 0.10 percent to finish at 34,798.00, while the NASDAQ eased 4.54 points or 0.03 percent to close at 15,047.70 and the S&P 500 rose 6.50 points or 0.15 percent to end at 4,455.48. For the week, the Dow rose 0.6 percent, the NASDAQ added 0.1 percent and the S&P gained 0.5 percent.The lackluster performance on Wall Street came on uncertainty about the outlook for the markets following recent volatility.

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.Machine learning Interview from in


Telegram Machine learning Interview
FROM USA